Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies.
نویسندگان
چکیده
Marine microbial communities often contain multiple closely related phylogenetic clades, but in many cases, it is still unclear what physiological traits differentiate these putative ecotypes. The numerically abundant marine cyanobacterium Synechococcus can be divided into at least 14 clades. In order to better understand ecotype differentiation in this genus, we assessed the diversity of a Synechococcus community from a well-mixed water column in the Sargasso Sea during March 2002, a time of year when this genus typically reaches its annual peak in abundance. Diversity was estimated from water sampled at three depths (approximately 5, 70, and 170 m) using both culture isolation and construction of cyanobacterial 16S-23S rRNA internal transcribed sequence clone libraries. Clonal isolates were obtained by enrichment with ammonium, nitrite, or nitrate as the sole N source, followed by pour plating. Each method sampled the in situ diversity differently. The combined methods revealed a total of seven Synechococcus phylotypes including two new putative ecotypes, labeled XV and XVI. Although most other isolates grow on nitrate, clade XV exhibited a reduced efficiency in nitrate utilization, and both clade XV and XVI are capable of chromatic adaptation, demonstrating that this trait is more widely distributed among Synechococcus strains than previously known. Thus, as in its sister genus Prochlorococcus, light and nitrogen utilization are important factors in ecotype differentiation in the marine Synechococcus lineage.
منابع مشابه
Phylogenetic diversity of Synechococcus in the Chesapeake Bay revealed by Ribulose-1,5- bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) sequences
In order to understand how Synechococcus in the estuarine environment (Chesapeake Bay) are phylogenetically related to other known marine Synechococcus, partial rbcL gene sequences from 25 strains of Synechococcus spp. isolated from estuarine, coastal and oceanic waters were sequenced. The rbcL gene phylogeny showed that Chesapeake Bay Synechococcus isolates together with other marine Synechoco...
متن کاملCulture-dependent and culture-independent diversity within the obligate marine actinomycete genus Salinispora.
Salinispora is the first obligate marine genus within the order Actinomycetales and a productive source of biologically active secondary metabolites. Despite a worldwide, tropical or subtropical distribution in marine sediments, only two Salinispora species have thus far been cultivated, suggesting limited species-level diversity. To further explore Salinispora diversity and distributions, the ...
متن کاملUtilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus
Prochlorococcus is the most abundant phytoplankter throughout the photic zone in stratified marine waters and experiences distinct gradients of light and nitrogen nutrition. Physiologically and genetically distinct Prochlorococcus ecotypes partition the water column: high-B/A (low-light adapted) ecotypes are generally restricted to the deep euphotic zone near or at the nitracline. Low-B/A (high...
متن کاملModeling Selective Pressures on Phytoplankton in the Global Ocean
Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeo...
متن کاملDiversity of picoplanktonic prasinophytes assessed by direct nuclear SSU rDNA sequencing of environmental samples and novel isolates retrieved from oceanic and coastal marine ecosystems.
Picoplanktonic prasinophytes are well represented in culture collections and marine samples. In order to better characterize this ecologically important group, we compared the phylogenetic diversity of picoplanktonic prasinophyte strains available at the Roscoff Culture Collection (RCC) and that of nuclear SSU rDNA sequences from environmental clone libraries obtained from oceanic and coastal e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 72 11 شماره
صفحات -
تاریخ انتشار 2006